Molecular Conformation of S-4-Nitrophenyl OO-Diphenyl Thiophosphate: X-Ray Crystal Structure Analysis

By Ramsey Gitany and Rognvald S. McEwen,* \dagger Department of Chemistry, Florida State University, Tallahassee, Florida 32306, U.S.A.

Abstract

The crystal structure of the title compound has been determined from three-dimensional data by direct methods. Crystals are monoclinic, space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions: a=10.826(2), $b=20.325(7), c=8 \cdot 139(2) \AA, \beta=105 \cdot 4(1)^{\circ}$. The structure was refined by least-squares to a final R of 0.13 , The conformation of the molecule in the solid state is consistent with e.p.r. measurements in solution and is not such as to suggest π-bonding on the basis of symmetry considerations.

The geometry of roughly tetrahedral groupings, e.g. $\mathrm{SO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{2-}$, and $\mathrm{ClO}_{4}{ }^{-}$, allows for the possibility of π bonding between $2 p$ orbitals of the ligand atoms and empty central-atom $3 d$ orbitals. ${ }^{1}$ Evidence for π-bonding has been sought in spectroscopic, structural, stability, and reaction-rate data, ${ }^{2}$ although its extent and importance remains an open question. ${ }^{3}$ The conformations of phosphate esters have been discussed by Collin ${ }^{4}$ in terms of π-bonding. Since that time the crystal structures of several phosphate esters have been solved and a number of generalizations made which do not seem to provide clear evidence for conformational constraints imposed by bonding. Nevertheless, it remains of interest to understand the conformations of phosphate esters since this type of compound has considerable biological significance.
E.s.r. hyperfine coupling constants of phosphorus have been determined by Gulick ${ }^{5}$ in a series of nitroaromatic anion radicals of the type (I), where X and Y are either

(I)
sulphur or oxygen atoms and R, R^{1}, and R^{2} are alkyl or aryl groups. The results have been interpreted in terms of an hyperconjugative mechanism for the transmission of spin density from the nitroaromatic ring to the phosphorus atom. It appears that steric effects influence the ${ }^{31} \mathrm{P}$ coupling constant in as much as bulky R groups constrain the nitroaromatic ring to lie more-or-less normal to the $\mathrm{Y}-\mathrm{P}-\mathrm{X}$ plane, thus placing the π-electron system

(II)
of the ring ideally for interaction with phosphorus $3 d$ orbitals. For the radical (II) of S-4-nitrophenyl $O O$ -
\dagger Present address: British Aircraft Corporation, Dept. 820, Area 501, Filton, Bristol.
${ }^{1}$ D. W. J. Cruickshank, J. Chem. Soc., 1961, 5486.
${ }^{2}$ K. A. R. Mitchell, Chem. Rev., 1969, 69, 157.
${ }^{3}$ L. S. Bartell, L. S. Su, and Hsiukang Yow, Inorg. Chem., 1970, 9, 1903.
${ }^{4}$ R. L. Collin, J. Amer. Chem. Soc., 1966, 88, 3281.
${ }^{5}$ W. M. Gulick, jun., and D. H. Geske, J. Amer. Chem. Soc., 1966, 88, 2928; W. M. Gulick, jun., ibid., 1972, 94, 29.
diphenyl thiophosphate the coupling constant is particularly large, and it is conjectured that (a) the favoured geometry is optimal for hyperconjugation, despite the absence of bulky groups $\mathrm{R},(b)$ the $\mathrm{P}-\mathrm{S}-\mathrm{C}$ angle is small, thus bringing the phosphorus close to the ring π-orbitals, and (c) there is some conjugation through the sulphur atom. We have determined the structure of this compound to investigate these points and to elucidate further the nature of preferred conformations of phosphate esters. Since very little is known structurally about thiophosphate esters it was also interesting to see if replacement of an oxygen by a sulphur atom introduced any significant new factor governing the conformation of the molecule.

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{NSP}, M=387 \cdot 35$. Monoclinic, $a=10.826(2), b=20.325(7), c=8 \cdot 139(2) \AA, \beta=105 \cdot 4(1)^{\circ}$, $U=1726 \AA^{3}, D_{\mathrm{c}}=1 \cdot 47, Z=4, D_{\mathrm{m}}=1 \cdot 47, F(000)=200$. Space group $P 2_{1} / c$. Mo- K_{α} radiation, $\lambda=0.71069 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=3.08 \mathrm{~cm}^{-1}$.

Space group and approximate cell dimensions were determined by Weissenberg and precession photography, with rotation about the b and c axes. A crystal for which absorption was negligible was mounted with its needle axis parallel to the ϕ axis of an automatic four-circle Hilger and Watts diffractometer. The needle axis corresponded to the c axis of the cell. Cell parameters were refined from angle measurements of 12 reflections. A total of 1991 non-zero unique reflection intensities were obtained from $20-\omega$ scan measurements by use of Mo- K_{α} radiation, and a scintillation counter with pulse-height discrimination. Because of decrease in the intensities of the standard reflections with time, portions of the data were re-collected by use of another crystal. Data were scaled by use of the standard reflections.

All calculations were performed on a CDC 6500 computer with local modifications of the ' X-Ray' system of programmes, ${ }^{6 a}$ and the plotting programme ORTEP. ${ }^{6 b}$ Scattering factors were taken from ref. 7. The structure was solved by direct methods. $339|E|$ values were $>1 \cdot 3$; a choice of three origin-defining reflections was made on the

[^0]basis of their large $|E|$ values and the large number of sign combinations into which they entered:

h	k	l	$\|E\|$
3	5	3	$3 \cdot 47$
6	8	$\overline{3}$	$3 \cdot 15$
2	17	$\overline{1}$	$2 \cdot 95$

These, along with the 75 largest $|E|$ values as generators produced finally 317 phased reflections by the use of Σ_{2} relationships. An E map calculated on these reflections showed clearly 20 out of the 25 atom positions. Calculation of structure factors gave a conventional R of $0 \cdot 46$. The remaining atoms were located by means of an F_{0} map. Refinement was by least squares, the function minimized being $\Sigma\left(\left|F_{0}\right|-K \mid F_{\mathrm{e}}\right)^{2}$, with anisotropic temperature factors for all atoms. Several weighting schemes were tried but none resulted in better refinement than that with all reflections assigned unit weight, except for ten having $F_{0} \ll F_{c}$, which were assigned zero weight. The best value of R obtained was $0 \cdot 13$ over all 1991 reflections. This high value was considered to be due to errors in the data resulting from deterioration of the crystals during data collection. The weak, high-angle reflections which took the longest to measure were the most adversely affected. Weighting analysis showed that they had by far the greatest R.

Table 1
Atomic positions (fractional co-ordinates), with estimated standard deviations in parentheses

Atom	X	Y	Z
S	$-0 \cdot 3481(04)$	$0 \cdot 0972(02)$	-0.1242(07)
P	-0.2348(04)	$0 \cdot 0887(02)$	$0 \cdot 1208(07)$
$\mathrm{O}(1)$	$-0.3392(11)$	$0 \cdot 0686(05)$	$0 \cdot 2174(18)$
$\mathrm{O}(2)$	$-0.1535(10)$	$0 \cdot 0236(05)$	$0 \cdot 1326(19)$
$\mathrm{O}(3)$	-0.1530(11)	$0 \cdot 1449(06)$	$0 \cdot 1910$ (20)
$\mathrm{O}(4)$	0.0951 (14)	$0 \cdot 1975(07)$	-0.4987(24)
$\mathrm{O}(5)$	$0 \cdot 1025(12)$	$0 \cdot 0916(07)$	$-0.5397(21)$
N	0.0617(14)	$0 \cdot 1409(09)$	$-0.4798(24)$
$\mathrm{C}(01)$	$-0.2233(13)$	$0 \cdot 1116(08)$	-0.2247(22)
$\mathrm{C}(02)$	$-0 \cdot 1648(17)$	$0 \cdot 1737(08)$	-0.2162(27)
C(03)	$-0.0689(16)$	$0 \cdot 1840(08)$	$-0 \cdot 2982(26)$
$\mathrm{C}(04)$	$-0.0412(14)$	$0 \cdot 1318(08)$	$-0 \cdot 4000(22)$
$\mathrm{C}(05)$	-0.0986(14)	$0 \cdot 0694(07)$	$-0.4107(24)$
$\mathrm{C}(06)$	$-0 \cdot 1194(15)$	$0 \cdot 0600(08)$	$-0 \cdot 3278(25)$
$\mathrm{C}(11)$	$-0.4081(15)$	0-1091(07)	$0 \cdot 2950(22)$
C(12)	$-0.3795(18)$	$0 \cdot 1748(08)$	$0 \cdot 3336(28)$
C(13)	$-0.4497(20)$	$0 \cdot 2095(09)$	$0 \cdot 4265(26)$
C(14)	$-0.5472(20)$	$0 \cdot 1777(11)$	$0 \cdot 4837(36)$
$\mathrm{C}(15)$	$-0.5756(18)$	$0 \cdot 1106(11)$	$0 \cdot 4395(33)$
C(16)	$-0.5043(16)$	$0.0748(09)$	$0 \cdot 3487(24)$
$\mathrm{C}(21)$	$-0.1937(14)$	$-0.0387(08)$	$0 \cdot 0720(24)$
C(22)	$-0.1307(16)$	$-0.0684(09)$	-0.0246(27)
$\mathrm{C}(23)$	$-0.1605(18)$	$-0.1347(09)$	-0.0818(29)
C(24)	-0.2520(19)	$-0 \cdot 1690(10)$	$-0.0122(31)$
$\mathrm{C}(25)$	$-0.3130(18)$	$-0.1375(09)$	$0 \cdot 0917(38)$
C(26)	-0.2848(17)	$-0.0704(09)$	$0 \cdot 1534(33)$

Table 2
Bond lengths (\AA), with estimated standard deviations in parentheses

$\mathrm{P}-\mathrm{S}$	$2 \cdot 052(7)$	$\mathrm{O}(1)-\mathrm{C}(11)$	$1 \cdot 372(22)$
$\mathrm{P}-\mathrm{O}(1)$	$1 \cdot 592(15)$	$\mathrm{O}(2)-\mathrm{C}(21)$	$1 \cdot 385(19)$
$\mathrm{P}-\mathrm{O}(2)$	$1 \cdot 579(12)$	$\mathrm{N}-\mathrm{O}(4)$	$1 \cdot 228(23)$
$\mathrm{P}-\mathrm{O}(3)$	$1 \cdot 464(12)$	$\mathrm{N}-\mathrm{O}(5)$	$1 \cdot 246(24)$
$\mathrm{S}-\mathrm{C}(01)$	$1 \cdot 780(18)$	$\mathrm{N}-\mathrm{C}(04)$	$1 \cdot 443(26)$
Ph rings C-C			
Mean		$1 \cdot 317(29)-1 \cdot 474(30)$	

Final atomic parameters are in Table 1, bond distances and angles in Tables 2 and 3, and intramolecular distances

[^1] issue.

TABLE 3
Bond angles (deg.), with estimated standard deviations in parentheses

$\mathrm{S}-\mathrm{P}-\mathrm{O}(1)$	$100 \cdot 49(49)$	$\mathrm{P}-\mathrm{S}-\mathrm{C}(01)$	$97 \cdot 45(53)$
$\mathrm{S}-\mathrm{P}-\mathrm{O}(2)$	$107 \cdot 98(59)$	$\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(11)$	$128 \cdot 20(1 \cdot 06)$
$\mathrm{S}-\mathrm{P}-\mathrm{O}(3)$	$117 \cdot 23(64)$	$\mathrm{P}-\mathrm{O}(2)-\mathrm{C}(21)$	$128 \cdot 82(95)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$102 \cdot 28(70)$	$\mathrm{O}(4)-\mathrm{N}-\mathrm{O}(5)$	$123 \cdot 97(1 \cdot 96)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$116 \cdot 23(85)$	$\mathrm{O}(4)-\mathrm{N}-\mathrm{O}(4)$	$117 \cdot 66(1 \cdot 72)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$111 \cdot 12(64)$	$\mathrm{O}(5)-\mathrm{N}-\mathrm{O}(4)$	$118 \cdot 00(1 \cdot 59)$
Ph, ring, internal	$111 \cdot 12(2 \cdot 11)-124 \cdot 10(2 \cdot 16)$		

Table 4
Intramolecular contacts (\AA), with estimated standard deviations in parentheses

$\mathrm{P} \cdots \mathrm{C}(11)$	$2 \cdot 668(20)$	$\mathrm{O}(1) \cdots \mathrm{O}(3)$	$2 \cdot 596(18)$
$\mathrm{P} \cdots \mathrm{C}(21)$	$2 \cdot 675(17)$	$\mathrm{O}(1) \cdots \mathrm{C}(16)$	$2 \cdot 317(25)$
$\mathrm{S} \cdots \mathrm{O}(1)$	$2 \cdot 817(16)$	$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 510(16)$
$\mathrm{S} \cdots \mathrm{O}(2)$	$2 \cdot 950(12)$	$\mathrm{O}(2) \cdots \mathrm{C}(22)$	$2 \cdot 316(23)$
$\mathrm{S} \cdots \mathrm{O}(3)$	$3 \cdot 017(14)$	$\mathrm{O}(4) \cdots \mathrm{O}(5)$	$2 \cdot 184(21)$
$\mathrm{S} \cdots \mathrm{C}(06)$	$2 \cdot 749(21)$	$\mathrm{O}(4) \cdots \mathrm{C}(04)$	$2 \cdot 288(25)$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 469(19)$	$\mathrm{O}(5) \cdots \mathrm{C}(04)$	$2 \cdot 308(24)$

in Table 4. Final observed and calculated structure factors and atomic thermal parameters are listed in Supplementary Publication No. SUP 21037 (3 pp.).*

RESULTS AND DISCUSSION

The ligands are disposed around the phosphorus atom in roughly tetrahedral geometry. The molecule adopts an extended configuration in the crystal with all phenyl rings approximately parallel, the perpendicular distance between the nearest rings being $3.5 \AA$. A projection of half the contents of the unit cell down the unique b axis is shown in Figure 1 and an ORTEP plot in Figure 2 shows the molecular conformation. The phosphoryl bond length is $1 \cdot 46(1)$, and the two ester $\mathrm{P}-\mathrm{O}$ bonds are equal at $1 \cdot 58(1) \AA$. Relatively few $\mathrm{P}-\mathrm{S}$ distances have been measured, but the value for bridging sulphurs in the phosphorus cage compounds with sulphur and oxygen is $2.11 \AA$ as compared to a terminal P-S distance of $1.85-$ $1.95 \AA$, depending on the electronegativities of other atoms bonded to phosphorus. ${ }^{8}$ The $\mathrm{P}-\mathrm{S}$ distance in potassium $O O$-dimethyl phosphorodithioate is $1.96 \AA .{ }^{9}$ Our value $[2 \cdot 052(7) \AA]$ indicates very little multiple-bond nature, though one may not rule out a small reduction in length, with respect to a normal single bond, due to a conjugative mechanism. The S-C distance $[1 / 78(2) \AA]$ represents a normal single bond.

The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ and $\mathrm{O}-\mathrm{P}-\mathrm{S}$ bond angles range from 100 to 117°. In agreement with other phosphate ester structures, the $\mathrm{X}-\mathrm{P}-\mathrm{Y}$ angles involving the esterified atoms are the smallest. The angles subtended at the ester oxygens are 128°, which is a rather large value in comparison to those of other structures. Bond angles at sulphur are known to attain smaller values than the corresponding angles in oxygen compounds. The present $\mathrm{P}-\mathrm{S}-\mathrm{C}$ angle is 97°.

The phosphorus atom lies almost directly over the plane of the nitroaromatic group, and this together with the small angle at sulphur may account for the very large
${ }^{8}$ A. Vos, R. Olthof, F. v. Bolhuis, and R. Botterweg, Acta Cryst., 1965, 19, 864.
${ }_{9}$ Ph. Coppens, C. H. MacGillavry, S. G. Hovenkamp, and H. Douwes, Acta Cryst., 1962, 15, 765.
phosphorus hyperfine coupling constant for the radical anion. ${ }^{5}$ The agreement between the molecular conformation observed for the solid state and that conjectured from e.s.r. results for solutions suggests that the former is due largely to intramolecular interactions rather than to crystal packing forces.
any atom from the best plane through $\mathrm{O}=\mathrm{P}-\mathrm{O}-\mathrm{C}$ is $0.07 \AA$.

These data might be interpreted as allowing for a large degree of overlap between phosphorus $3 d$ and oxygen $2 p$ orbitals, assuming approximate $s p^{2}$ hybridization of the oxygen orbitals. The other ester groupings, however,

Figure 1 Projection of half the contents of the unit cell along the unique b axis

As in other nitro-aromatic compounds, ${ }^{10}$ the nitrogroup is rotated a few degrees out of the plane of the phenyl ring.

The angles between the $\mathrm{P}-\mathrm{O}(3)$ bond and the normals to the planes $\mathrm{P}-\mathrm{O}(1)-\mathrm{C}(11), \quad \mathrm{P}-\mathrm{O}(2)-\mathrm{C}(21)$, and

Figure 2 ORTEP drawing of one molecule showing the molecular conformation and numbering system used in the analysis
$\mathrm{P}-\mathrm{S}-\mathrm{C}(01)$ are 41,86 , and $58 \cdot 5^{\circ}$. Thus atoms $\mathrm{O}(3)-\mathrm{P}-$ $\mathrm{O}(2)-\mathrm{C}(21)$ are almost coplanar. This coplanarity is one of the most consistent features of phosphate ester structures. ${ }^{11}$ In six structures ${ }^{11-16}$ the greatest deviation of ${ }^{10}$ S. C. Abraham, Acta Cryst., 1950, 3, 194.
${ }_{11}$ M. G. Newton, J. R. Cox, jun., and J. A. Bertrand, J. Amer. Chem. Soc., 1966, 88, 1503.
${ }^{12}$ G. W. Svetich and C. N. Caughlan, Acta Cryst., 1965, 19, 645.
${ }^{13}$ D. Swank, C. N. Caughlan, F. Ramirez, O. P. Madan, and C. P. Smith, J. Amer. Chem. Soc., 1967, 99, 6503.
are not usually very well oriented for large overlap, and there appear to be no consistent length differences between various $\mathrm{P}-\mathrm{O}$ (ester) bonds.

Methyl pinacol phosphate ${ }^{11}$ is unusual in that the methyl carbon lies on the same side of the $\mathrm{O}-\mathrm{P}$ bond as the phosphoryl oxygen rather than in a ' trans '-arrangement as in the other structures. Bertrand et al. ${ }^{11}$ felt that this was evidence for π bonding, but further structural work appears to have provided little support of the idea. As Trueblood et al. ${ }^{17}$ point out, the planarity of the four atoms may reflect nothing more than the usual tendency to assume a staggered conformation.

In the parent compound of (II), looking in turn along the $\mathrm{O}(1)-\mathrm{P}, \mathrm{O}(2)-\mathrm{P}$, and $\mathrm{S}-\mathrm{P}$ bonds, the $\mathrm{O}(1)-\mathrm{C}(11)$, $\mathrm{O}(2)-\mathrm{C}(21)$, and $\mathrm{S}-\mathrm{C}(01)$ bonds lie almost exactly staggered with respect to two bonds radiating from the phosphorus. This geometry, and the equality of the ester P-O bond lengths, lend support to Trueblood's point of view.

We thank Dr. W. J. Gulick for providing the crystals, and the Research Corporation for a grant.
[4/202 Received, 1st February, 1974]
${ }^{14}$ Mazhar-ul-Haque and C. N. Caughlan, Acta Cvyst., 1970, B26, 1528.
${ }_{15}$ Yuan-Yuan Chiu and W. N. Lipscomb, J. Amer. Chem. Soc., 1969, 91, 4150.
${ }^{16}$ A. N. Barrett and R. A. Palmer, Acta Cryst., 1969, B25, 688.
${ }_{17}$ E. Shefter, M. Barlow, R. A. Sparks, and K. N. Trueblood, Acta Cryst., 1969, B25, 895.

[^0]: ${ }^{6}$ (a) J. M. Stewart, G. J. Kruger, M. L. Ammon, C. Dickinson, and S. R. Hall, Technical Keport TR 192 of the Computer Science Center, University of Maryland, 1972; (b) C. K. Johnson, ' ORTEP: A Fortran Thermal-ellipsoid Plot Program for Crystal Structure Illustrations,' Report ORNL 3794, Oak Ridge National Laboratory, Tennessee, 1970.

 7 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^1]: * See Notice to Authors No. 7 in J.C.S. Perkin II, 1973, Index

